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An Analogue of the Nearest Integer 
Continued Fraction for Certain 

Cubic Irrationalities 

By H. C. Williams* and G. W. Dueck 

Abstract. Let 0 be any irrational and define Ne(a) to be that integer such that 10 - Ne(O)f < 2 
Put po = 0, ro = Ne(p0), Pk+1 = l/(rk - Pk), rk+1 = Ne(pk+ ). Then the r's here are the 
partial quotients of the nearest integer continued fraction (NICF) expansion of 0. When D is a 
positive nonsquare integer, and 0 = VD, this expansion is periodic. It can be used to find the 
regulator of 2(FD ) in less than 75 percent of the time needed by the usual continued fraction 
algorithm. A geometric interpretation of this algorithm is given and this is used to extend the 
NICF to a nearest integer analogue of the Voronoi Continued Fraction, which is used to find 
the regulator of a cubic field 'Ywith negative discriminant A. This new algorithm (NIVCF) is 
periodic and can be used to find the regulator of W. 

'4 
If I < VIA I/148, the NIVCF algorithm can be used to find any algebraic integer a of q 

such that N(a) = 1. Numerical results suggest that the NIVCF algorithm finds the regulator 
of C = 2 (VD) in about 80 percent of the time needed by Voronoi's algorithm. 

1. Introduction. Let 0 be any real number. We find the Regular Continued Fraction 
(RCF) expansion of a by putting 40 = O, qo = [], ei = 1/(O, - q,),q1+ = [ + l] 
(i = 0, 1, 2, .. ., n, ... ) and denote this as 

= [qO,ql,q2 * q n-10n]- 

Here [a] denotes that integer such that a - 1 < [a] < a. We also define the 
convergent Cn = [q0,qj,q2,. . qn]. Further, if A-2 =0, A-, = 1, B2 = 0, B-1 = 1, 

Ak+ I qk + Ak+ Ak-I, Bk+ I = q k+Bk + Bk-I (k = -1,0, 1,2,... ), 

then Cn = An/Bn. 
The Nearest Integer Continued Fraction (NICF) of 0 is found by setting po = 0, 

ro = Ne(po) and calculating p1+1 = I/(ri - p), r1, = Ne(p1+1) (i = 0,1,2,..., 
n,... ). We denote this by 

O = (ro,rl,r2,..., rn-1,pn) 

Here Ne(a) is that integer such that I a - Ne(a)l < 2; that is, Ne(a) is the nearest 
integer to a. The convergent Cn = (ro, rl, r2,..., rn) can be calculated by noting that 
Cn=An/Bn,A 2=0,A I = 1,B2=-1,B- I=0,and 

Ak+ = rk+Ak Ak-1, Bk+= rk+lBk -Bk- (k = 1,0, 1,2,3,. 
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The NICF was introduced in 1873 by Minnegerode [4] who used the NICF 
expansion of D to solve the Pell Equation 

(1.1) t2 - Du2 = 1. 

Later Hurwitz [3] gave further results concerning the NICF and more recently other 
results have been obtained by Williams [7], Williams and Buhr [6], and Adams [1]. 

For example, in [6], the following theorem is proved. 

THEOREM 1.1. If c = (3 + r/ )/2 and a, b are coprime integers such that 

la/b - 01 < l/cb2 

for some irrational 0, then a/b must be a convergent in the NICF expansion of 0. O 

In this paper we shall at first be concerned with NICF expansions of quadratic 
irrationals. To this end we let D be a square free positive integer and put 'X = 2 (D-), 
the quadratic field formed by adjoining D to the rationals 2. Let CO; be the ring of 
algebraic integers in 'X. CO has as basis (1,pu}, where ,t = (1 + D )/2 when D 1 
(mod 4) and y = D otherwise. Let EO (> 1) be the fundamental unit of SX and let A 
be the discriminant of 'X. If a E- X, let a' denote the conjugate of a and N(a) = aa' 
be the norm of a. 

It is well known that if 0 Ec X, the RCF expansion of 0 is periodic. In fact, if 
0 = ,i, then 

= [qo, ql,q2,...Iqp], 

where we draw a bar over the periodic part of the continued fraction. From results 
in [3], we find that if 0 = t, then the NICF expansion of 0 is also periodic; further, 

y = (rO, rl, r2,.*, r ) 
when N(EO) = 1 and 

y = (ro, rl, r2,..., r, -rl, -r2,. .-r 

when N(EO) = -1. In fact we have the following theorem. 

THEOREM 1.2. If D * 5, then EO = A1_1 - 'B,-1I; if D = 5, then EO = I4-I- 

Of course this result shows us how to solve (1.1) by using the NICF expansion of 
JJ. 

Theorem 1.2 can be regarded as a special case of 

THEOREM 1.3. If a = x + y,u, where x,y are coprime rational integers, a > 1 and 

IN(a)I < 25/cl , where cl = C2 = (7 + 3r)/2 = 6.85, then 

a = lAm - WBmI 

for some m > 1. 

Proof. This result can be derived by using Theorem 1.1 and the simple observation 
that if Cn (n > 0) is any convergent in the NICF expansion of 0 (> 2), then -(Cn)-1 
is a convergent in the NICF expansion of -1/0. 0 

Thus, the NICF can be used to find all elements in CQ with norm bounded by 
. For, if N(al) = N andl NIN < i\/c1 and a < 1, thenf3 = a ?c > 1 for some 
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k and IN(/3)l = IN(a)I. Since eo and /B can be found from the NICF expansion of I, 
so can a. Further, if a = x + y D and gcd(x,y) = d > 1, then, since IN/d21 < INI, 
we can find a/d from the NICF expansion of A. 

From the several numerical results presented in [6] it seems that the ratio v/p is 
usually about .69. In fact Adams [1] gives results which suggest that this ratio should 
be log((l + r/ )/2)/log2 in the limit. This, of course, means that we can usually 
calculate e0 more rapidly by using the NIVCF algorithm rather than the NICF 
algorithm. Also, if we are attempting to solve the Diophantine equation 

N(a) = I, 

where a E Cy, and III < ,/c-, we should use the NICF algorithm rather than the 
RCF. 

Let 8 be the real zero of an irreducible (over 2) cubic polynomial with integer 
coefficients and negative discriminant. In order to find the fundamental unit e0 
(> 1) in IF= 2(8), Voronoi's Continued Fraction (VCF) algorithm is often used. 
(See Delone and Faddeev [2] or Williams, Cormack, Seah [8].) This algorithm, which 
is particularly suited for the problem of finding the fundamental unit(s) in a cubic 
field, is an extension of the RCF algorithm. In view of the increased speed obtained 
by using the NICF algorithm over the RCF, it would be desirable to develop an 
analogue of the NICF algorithm for cubic irrationalities. In this paper we shall 
develop such an algorithm, called the nearest integer analogue of the Voronoi 
Continued Fraction (NIVCF), for use with elements from IF above. We will also 
prove theorems analogous to Theorems 1.2 and 1.3 and compare (numerically) the 
speed of the NIVCF algorithm with that of the VCF. In order to do all of this we 
must first place the RCF and NICF in a geometric setting similar to that used for 
Voronoi's algorithm in [2] and [8]. This will be done in the next two sections. 

2. The Lattices S and 6K. In this section we give a very brief description of certain 
properties of some special lattices S and 6Y. While we confine our discussion here to 
these special lattices, it should be pointed out that much of what is said here can be 
extended to more general lattices. See, for example, the approach of Voronoi [5] and 
the general results given in Delone and Faddeev [2]. 

Let &; represent Eucidean n-space. If /3 E X, the point B of &2 corresponding to 
B is (, /3'). If A, E ES {, and A, , are rationally independent, define lattice S by 

S = {uA + vMIu,v EE Z} 

where A = (A,A'), M = (p,uA'). We say that S is the lattice with basis (A,t) or 
(A, M) and will denote it by ( A, t) . 

If a E C, let a', a" denote the conjugates of a and define A, the point of 63 
corresponding to a, to be 

A = (a,(a' - a")/2i, (a' + a")/2), 

where i2 + 1 = 0. Since the discriminant of the polynomial of which a is a zero is 
negative, we see that A is a point with real coordinates. If A, pt, v E IF and A, t, v' are 
rationally independent, define the lattice gt by 

'Y= {uA + vM + wNIu,v,w E Z). 
Here 611 is the lattice with basis (A, t, ) and will be denoted by ( A, , P) 
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Let C represent either the lattice 5 or 6J. For the sake of brevity we will often write 
a E CS as a means of denoting that it is the corresponding point A of 62 or 63 that is 
actually in CS. Also, if CS = ( A, [) and a E XfC we define aCS to be ( aX, apx); similarly, 
if CS = (A, ,v) and a E C, we define aCl to be (KaX,A,ai,ap). Note that under this 
convention, if aC I = aC(2 and a * 0, then C I = C2' 

If A = (a,(a') is a point of 5, we define the normed body of A, %Th(A) or %I((a), to 
be 

%L(A) = %X(a) = {(x,y)l(x,y) E 62, lxi < lal, IYI < Ia'). 
This is a semiopen rectangle which is symmetric about the origin 0 of 62. If A is a 
point of I1, we define the normed body of A to be 

1X(A) = %X(a) = ((x,y,z)l(x,y,z) E 63 IXI < lIl,y2 + z2 < Ial12). 
This is a semiopen right circular cylinder, symmetric about the origin 0 of 63 with 
axis the x-axis of 63. We point out here that if I a'l = I /',1 then a = ?f3 (see [2, p. 
274]). Thus, if I13'I = Ia'l, then B t (a). 

We say that 0 (* 0) or the point 1 corresponding to 0 is a minimum of CS if 
6I (4) n C = (0). If 4 and k are minima of CS and 4 > k, we say that 4 and k are 
adjacent minima when there does not exist a nonzero 0 E CS such that 0 < 0 < 4 and 
10'1 < 14'1. If 

(2.1) 01,02,03, ..., 0n,a, 

is a sequence of minima of CS such that 0 +1 > 0, and 0, ?1, 0i are adjacent, we call 
(2.1) a chain of minima of CS. By Minkowski's Theorem (see [2]) we can prove that 
there always exist such chains in CS. Further, if 0 is any minimum of CS and 0 > 01, 
then 0 = 0m for some integer m > 1. 

If e = ( 1, 1) or C = ( 1, A, ) and C has l as a minimum, we say that C is a reduced 
lattice. We now give some theorems concerning these reduced lattices. 

THEOREM 2.1. Let C be a reduced lattice and let 0 (> 1) be the minimum of CS 
adjacent to 1. There exists a basis of C which includes 1 and 0. 

Proof. The proof of this result for CS = ( 1, A,v ) is given in Section 2 of [1O]. The 
proof for E, = ( 1, [) is similar but easier. O 

THEOREM 2.2. If C* = (1/0) C, where C and 0 are defined in Theorem 2.1, then C* is 
a reduced lattice. 

Proof. By Theorem 2.1 we see that fC* has a basis which includes 1. If fC* is not 
reduced, there must exist a E fC* such that lal < 1, Ia'l < 1, and a * 0. Since 
aO E CS, it follows that aOlI < 101, I a'0'l < I0'I and aO * 0. This contradicts the 
definition of 0. E 

THEOREM 2.3. Let C*, C, 0 be as defined in Theorem 2.2 and let w (> 0) be the 
minimum adjacent to 0 in C. If 0* (> 1) is the minimum adjacent to 1 in C*, then 
( = 00. 

Proof. Let O = 00*. We have 0 > 0 and kk'I < I0'I; thus, if w * , then w < 00*, 
and Iw'l < I0'I. Since w/l # 0, w/l E C *, 0 < w/0 < 0*, and Iw'/0'1 < 1, we have a 
contradiction to the definition of 0*; thus, w = 0. O 
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COROLLARY. If D1 = (l/o)f, then P is a reduced lattice. E 

Let C = fe be any reduced lattice. Let 0(n) ( > 1) be the minimum in P&n adjacent 
to 1 and define en = (l/0 n))f&n. By the theorems above we see that each of the C 
is a reduced lattice. Further, if O1 in (2.1) is 1, then 

n-I 

(2.2) 0f = H 9(i) 

and 

(2.3) 0nEn El= 

If e has as its basis a basis of Cy or Of, then f is reduced and e C E $. Also, since 
IN(0o)l = 1, co must be a minimum of C; consequently, when 01 = 1 we have 
,- = Op+I for somep > 1. Since CI = O p ,I = l2p+i' we see that the algorithm for 
finding the E& is periodic with period length p. 

We conclude this section with the following simple result. 

LEMMA 2.4. If 0 (> 1) is the minimum adjacent to 1 in a reduced lattice 6 = (1, ,u, v), 
then 10' -11 > 1. 

Proof. Suppose 10' - 11 1 1. If we put 4 = 0 - 1 E 6i, then 0 < < 0 and 
'< 1. If I'1.= 1, then + - + 1 and 0 = 2, which is not possible. If 1p'I < 1 we 

have a contradiction to the defintion of 0; hence, 10' - 11 > 1. 0 

3. The RCF and NICF in S. Let C&I = I = ( 1, ) be a reduced lattice. From the 
results of Section 2 we see that the elements in a chain (2.1) in $I can be found from 
(2.2) once we know how to find the minimum 0 (> 1) adjacent to 1 in any reduced 
lattice S = (1,tp). The following theorem of Voronoi [5] can be used to do this. 

THEOREM 3.1. Let S = (0,4) and suppose that 4 > 0 > 0. Then 0 and 4 are 
adjacent minima of S if and only if I?'1 > I4,'I and 4'0' < 0. 

Proof. If 4 and 0 are adjacent minima of 5, then by definition we have 101 I' 14'I. 
Since 0 < 4 - 0 < 4, we must have 4,' - 0' > I4,'I; otherwise, 4 could not be a 
minimum. Hence 0'4' < 0. 

Suppose I0'j > I4,'I and 0'4,' <0 . If 0 is not a minimum of S, there must exist 
y E S such that IY-I < 0 and IY'I < IO'I. Since -y = aO + b4, (a,b e Z), this means that 

laO + b4l < 0, laO' + b4'i < IO'I. 
Clearly, neither a nor b is zero; but, if ab > 0, then laO + b4l > 0 and if ab < O, 
then laO' + b4'j > I0'I. Thus, 0 is a minimum of S and by similar reasoning so is 4. 
Further, there cannot exist a,b E Z such that both laO + b4, < 4 and laO' + b4,'J < 

I0'I hold; thus, 0 and 4 are adjacent minima. U 
Thus, if S = ( 1, 4) where 4 > 0 and 4' < -1, we see by the above theorem that S 

must be a reduced lattice and + - [-4'] must be the minimum adjacent to 1 in S. If 
we put 'S S, we have 0<)= - + [4,']; also, by Theorems 2.2 and 3.1, we have 
09(n+1) = 1/0l(n) + [_I/g("n),]. Thus, if we put 4 = 4O = -4,', qo = [bo],k = 

-l@()k k= [qk ] we find that 

o= [qo,ql,q2** qn_I,4n] 
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is the RCF expansion of 40. The regular continued fraction expansion of 4, where 
4)> 1, 4' < 0, is therefore equivalent to the chain (2.1) of minima in the lattice 
(1, -0'). In fact 6tn = An-2-f OBn-2- 

We will now give a similar interpretation of the NICF algorithm in S. We first let 
S = (q1, ) be reduced and let X E 5 be defined by 

! 
when6'> -I, (3.1) 2owe6' 4 

w when O' 2 

where 6 (> 1) is the minimum adjacent to 1 in S and o (> 6) is the minimum 
adjacent to 6 in S. 

Algorithm 1. Put C = S and let x(n) be the value of X in gn. Define n = 

(1/X(gn) )gn 
We see that the lattices C, are all reduced by Theorem 2.3; further, if 

n-- I 
(3.2) Xn H Xgi) 

i=1 

then X7fnn = C1,* 

THEOREM 3.2. In (3.1) above, we have X = 6 + 1. 

Proof. Clearly S = (1,6) = (6,6 + 1). Further, 0 < 6' + 1 < l; hence, 16' + 1 
< I6'I and (6' + 1)6' < 0. The theorem now follows from Theorem 3.1. z 

THEOREM 3.3. IfS = (1,), where I4I < 4, 4 > 1, and S is a reduced lattice, then 
X in (3.1) must be 4. 

Proof. If 4" < 0, then 6 in (3.1) must be 4 by Theorem 3.1. Also, since 4' > - 2, 

we have x = = .If ' > 0, then -1 < - 1 < - and S = (1,4 - l). Since S 
is reduced, we must have6 = '- 1, and 6' < - 2. It follows that X = = + 1 = 
by Theorem 3.2. E 

THEOREM 3.4. Let 4 > 1 and lI ' < 4. If we put 4 = sgn(4')/4 and x = Ne(4)') -4), 
we must have x> I and IX'l < 24 

Proof. Clearly IX'l < 1. Also, since 4 > 1, we have 14)1 < 1. Now if 4' < 0, then 
- < <' <0; hence, 1/4' <-2 and 4' > 2. We have x> 2 - 4)> 1. Similarly, 
x > l when"' > O. cl 

Suppose that '51 =Sl = (1,4'), where 4 > 0 and 4' < -1. We have X 4'- 
Ne(4') by Theorem 3.3. Also, by Theorems 3.3 and 3.4, X(j 1) - Ne(4)) - f where 

= mI/x(j and q = sgn(X U)'). If we put po = -4" and pi = (H>. l1)4)' we have 

=P(if )/~+'l = (H- 1))/ (Ne(sV) - 4) ) = 1/(Ne (p,) - pi). 

rhus, the problem of expanding 4) into a NICF when 4)> 1 and 4' < 0 is equivalent 
to the problem of finding the values of Xn in (3.2) when 511 = = (1,-4)>. Note 
that IP pI = 1/4'); also, Xn = A2 - 2-) Bn-2 - 

We now have an interpretation of the NICF algorithm as a means of finding 
certain elements in the lattice S. In the next section we will extend the NICF to the 
NIVCF by extending Algorithm 1 in S to an algorithm analogous to it in '11. 
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4. The VCF and the NIVCF in 6K. Throughout this section and the remainder of 
this work we will assume that 6 = ( 1, t, v) and that 6 is a reduced lattice. We have 
seen that the problem of finding the elements of a chain (2.1) can be solved when we 
can solve the problem of finding the minimum adjacent to 1 in f&. When 1 = S 
Theorem 3.1 provides us with an easy method for determining this minimum and 
this, in turn, leads to the RCF. When 1 = 6A, however, the problem is somewhat 
more difficult. In [5] Voronoi showed how this could be done for the minimum 
adjacent to 1 and less than 1. In Section 33 of [5] he also gave a method for finding 
the minimum which is adjacent to 1 and greater than 1, but did not provide a proof 
for his method. He stated that he had such a proof but that it was too complicated to 
give. In [8] a method, slightly different from that of Voronoi was given for doing 
this. In order to briefly describe this technique, we require some notation. 

Let a E 6A. We define the puncture P(a) to be the point (ta,'qa) in the x-y plane, 
where 

= (2a - a' - a")/2, la = (a' - a")/2i. 
Further, we define i'a = (a' + a")/2. We note that a = Da + (a (a?i = (a + (f38 
?la+13 = ?la + ?lfi, iVa+? = &'a + . Also, if a E 2, we have 0la = = 0 and g;a = a. 
Thus, the set of all punctures formed from all the points of 6K also forms a lattice 
E(P) with basis {P(,u),P(v)). We also point out that if (a or 'qa is rational, then 8 
must be the zero of both a quadratic and cubic polynomial with integer coefficients 
unless a E 2. Since a - [a] E 6AK, 0 < a - [a] < 1, and 0 < a' - [a] < 1 when 
a E 2, we see that, since 6K is reduced, we must have a = [a]. Thus, if (a or 'q" is 
rational, then a E Z and (a = = 0. 

In [8] it is shown that there exist 4, 4 E 6K such that 

(> tP> 0; q onA'? < 0 1'> Iq 

and 

lq4,l > V3/4, lqkI < 1 - V3/4, 21ql > 1 - Jq,1. 
Further such 4 and 4 can be found by using the RCF in X(P) as described in [2] or 
[8]. Actually, there exist 4),4 in 6K such that (, > (,p > 0, qoqp < 0, lqol < 2, 

I'lq4 > 2, but these may be difficult for a computer to find because of precision 
problems; hence, the more relaxed conditions given above are preferable for compu- 
tational purposes. In [8] the following theorem is proved. 

THEOREM 4.1. If 0 (> 1) is the minimum adjacent to 1 in 6A, then P(O) must be one 
of P(4)), P(4), P(O - 4), P(O + 4) or P(20 + 4). 

Thus, once 4 and 4 have been found there are only a few choices for P(O). We 
need only find that 0 such that P(O) is one of these five choices, I0'l < 1 and 0 (> 0) 
is least. Since 

(4.1) la 12 = n2 + t2 

we must have ItaI < 1. Hence 0 must be a + y, where -y is in {4,4,4 - 4, 4 + 4, 
24 + 4) and a = [-nY] or [-hY] + 1. It is then necessary to find the least of these 10 
possibilities for 0 such that I 0'l < 1. By evaluating the integer I = N(0 - N(0)) this 
latter condition can be checked by using only integer arithmetic. We have I '[ < 1 if 
and only if I < 0. 
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It is of some interest to know how frequently we might expect P(G) to be P(o), 
P(4), P(o - 4), P(o + 4) or P(20 + 4). To this end we computed all the lattices 
@Li (i = 1,2,3,... ,p) where 6I = (1, ,v) and {(,Ip,v) is a basis of OF for each 

distinct pure cubic field O = 2(VD) with D < 67,000. We determined a total of 
233762826 lattices and found that P(0) = P(0) 137074347 times, P(G) = P(#) 
70776182 times, P(0) = - 4) 24432636 times, P(0) = P(o + 4) 1479661 times, 
and P(0) * P(20 + 4). One might be led to conclude from this large amount of 
evidence that P(0) is never P(20 + 4), but when D = 68781 we find that in 6'2307, 

4 = (-72036 + 1809% + 2 2)/126539, and 4 = (117574 - 26688 + 6782)/126539. 
We have 0 = (-26498 + 9508 + 7182)/126539 and P(0) = P(20 + 4). It certainly 
appears that this case is a rarity and, as such, seems to be a nuisance to consider. In 
fact, as we shall see from results in this section and Lemma 7.2, we can find c0 by 
ignoring this case. We may not find all the @Li and 0i this way but we will find -O. 

In order to develop the NIVCF, we use the idea of Algorithm 1 in Section 3 and 
extend it to 6A. The value of 0' for 0 in 5 represents the last coordinate of the 
corresponding point e of the lattice S. The analogous quantity for 0 E S{ is 

t8 = (0' + 0")/2. If 0 (> 1) is the minimum of 6R adjacent to 1 and X (> 0) is the 
minimum of 6P adjacent to 0, we define 

(4.2) X when 0' + 0" > - 1, 

This is analogous to the definition (3.1) of X in S. We also point out here that 
0' + 0" < -1 if and only if N(0' + 0" + 1) < 0. Now if T = 0 + 0' + 0", S = 00' 
+ 0'0" + G"G, N = 00'0", then T,S,N E Z and N(0' + 0" + 1) < 0 if and only if 
N(T+ 1 - 0) < 0. Since N(T+ 1 - 0)= T2 + 2T+ 1 + (T+ 1)S - N, we can 
use integer arithmetic only to test whether or not 0' + 0" < - 1. 

We now have 
The NIVCF Algorithm. Put Cl = 6A, and let x(n) be the value of X in 'n. Define 
n+l= (I/X(n ))5- . 
We have 

n-I 
(4.3) Xn= 1 X ) 

and 

(4.4) Xn=n 51 

This, of course, is just the same as Algorithm 1 except that 51 = I and we use (4.2) 
to define X. 

When 0' + 0" < -1, we have 10' + 11 < IG'I and 0 + 1 > 0; thus, X = X 0 + 1. 
Unfortunately, we cannot, as we did in Section 3, prove that W = 0 + 1; for this is 
not always the case. In the next few sections we will develop an algorithm for finding 
w when 0' + 0" < - 1. In the remainder of this section we will develop some results 
concerning our NIVCF algorithm. These results are analogous to some of those 
presented in Section 1. We first require some simple lemmas. 

LEMMA 4.2. If Xs = 0,, then gs = 6A,. 
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Proof. From (2.3), we have 0n(An = 61, and from (4.4) we have xsis = 51; thus, 
OnAn = Xsis and since X, = On, we must have ', = 6n,. U 

LEMMA 4.3. If X, = On, then Xs + I = On + I or On + 2 

Proof. From Lemma 4.2 we have gs = 6 thus, 6 in 's is 69 n). If n), + 6"n)" > 

-1, then X(s) g 
n; if f + f < -1, then X -) co - n by Theorem 

2.3. The lemma now follows easily from (2.2) and (4.3). UJ 

COROLLARY. Given any Xs there exists some On (n > s) such that Xs = On. 

Proof. Since XI = Al = 1, the result follows by using the lemma and induction on 
s. U] 

COROLLARY. Given any pair on and On+I from (2.1), at least one of them must be 
some xs with s < n + 1. 

Proof. By induction on n. U 

Notice that these results are analogous to results, which are proved in [7], 
concerning the NICF. 

LEMMA 4.4. Let p E 2(8), 0 < p < 2m and IP'I < m, then Id(p)l < c2m6, where 
d(p) = (p - p,)2(p, - p,,)2(p," - p)2 and C2 = 9(1047 + 85 53 )/128 - 147.543. 

Proof. Put c = p, a + bi = p', a - bi = p", where a,b,c are real. ThenIptI2= a2 
+ b2 < mi2, lal < m, Ibl < m, and 

jrd(p)j = 21bl((a - C)2 + b2) 

Since ld(p)l < 4b2(c2 + b2)2 < lOOm6 < c2m6 when a > 0, we need only consider 
the case of a < 0. We note that since b2 < m2 - a2 and Ic - al < 2m - a, we have 

(a - c)2 + b2 < (2m - a)2 + m2 - a2 = Sm2 - 4am 

for values of x such that IxI < m, the functionf(x) = 4(m2 - x2)(5m2 - 4xm)2 has 
a single maximum at x = (5 - 153 )m/16; thus, f(x) < c2m6 when Ixl < m. It 
follows that Id(p)l < c2m6 when -m < a < 0. U 

We now prove a result which is analogous to Theorem 1.3. Part of the proof of 
this result is based on an idea which Arne Brentjes (personal communication) used 
to extend Theorem 1 of [9]. We assume that {1, , v) is a basis of O and =i5 (K l,p?V). 

THEOREM 4.5. Let a = x + y,u ? zv, where gcd(x,y,z) = 1, if a > 1 and N(a) 
4 

< IA /C2, then a = Xk for some k > 1. 

Proof. Certainly a * XI = 1. Assume a * Xk for any k > 1. Since a > 1, there 
must be some integer n > 1 such that 

n < - a < 6in+ I 

in the chain (2.1) when 6, = 1. If a * 6 , put p = N(a)6/1a. We have p E O, 
0 < p < N(a) and Ip'I < N(a), the latter result following from the fact that a is not 
the minimum adjacent to On. If a = 6a, then, since a * Xk for any k > 1, we must 
have on+I = Xk for some k > 1 by a corollary of Lemma 4.3. In this case put 
p = N(a)) On+ I -/a = N(a) f9(r). Now lU' <I and X g n-1) + 1; 

thus, IP1I < N(a) and 0 < p < N(a)(l + l/ n -)) < 2N(a). It follows from the 
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above observations that if a - Xk for any k > 1, there must exist some p E 06 such 
that 0 < p < 2N(a), Ip'j < N(a). Further, since p = N(a)/3/a, where a * /3 and 
,B = 0,n or 0n+i, we cannot have d(p) = 0. For, if d(p) = 0, then p E Z as p E EV,5. 
Since B = a + b,u + cv, where a,b,c e Z, we get x = N(a)a/p. y = N(a)b/p, 
z = N(a)c/p. Since gcd(x,y,z) = 1 and gcd(a,b,c) = 1 (otherwise /3 could not be a 
minimum of IK), we get p = N(a) and /3 = a, which is not so. 

Now 

2 2 2 aa a/ /32 

N- a 6a a'/3 /32 

(aa'a")1 a ,2 a /3" ,,2 

Since a,/ E3 0, we have A = (aij)3 X3 where ai1 E Z such that 

(a2, a:, /2)= (l,,v)A. 

Thus, we have 

a2 a/3 /32 1 / v 

a'2 alp, /,2 = 1 ' V' JA 
a"2 a,/3 3,,2 1 M" V" 

and Id(p)I = N(a)2lAl2lAl. 
Since d(p) * 0, we have JAI * 0 and JAI E Z. By Lemma 4.4, Id(p)I < c2N(a)6; 

hence, c2N(a)4 > IA 2 lj . We see that 
4 4 

N(ao) > JA1 AI2//C2 A Vl jC2 

and this is impossible. Thus a = Xk for some k > 1. z 
We also have a corollary which is analogous to Theorem 1.2. 

COROLLARY. If A < -23, then eO + Xk for some k > 1; if a = -23, then '- = X2. 

Proof. N(eO) = 1 and 1 < lA /C2 for IA1 > c2. Thus we need only test directly 
the few cases (see, for example, [2]) where IAl < c2. For each of these cases we find 
that 0 = Xk for some k > I except for the case of A = -23 where X2 = 0* 1 

Note that if r = k - 1 in this corollary, we have C54, = 51 and the NIVCF 
algorithm is periodic with period length 7r. We also note that the NIVCF algorithm 
can be used to find all of the solutions a E 0, of the Diophantine equation 

N(a) = I 

when III < AV5IC2 

5. Geometric Inequalities. In order to find X in any reduced lattice 6 we need to 
be able to find X when 6' + 0" < -1. We will do this by limiting the number of 
possibilities for P(w). In order to do this we require the inequalities from plane 
Eucidean geometry which are presented in this section. For our further work the 
most important of these results are Lemmas 5.4, 5.5, 5.6 and 5.7. However, in order 
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to prove these results we require three simple lemmas which we give here without 
proof. We say that P is in a certain geometric figure if it is either on the boundary of 
that figure or within it. 

LEMMA 5.1. If P is any point in the triangle ABC, then AP , max(AB,A C). [1 

The next two lemmas refer to Figure 1 below. 

U 

T 

R S Q P 

FIGURE 1 

Here RQ is a chord of a circle and U lies on the smaller of the arcs cut off by RQ 
or on either of them if RQ is a diameter of the circle. 

LEMMA 5.2. If T is any point in the segment R UQ in Figure 1 and P is any point on 
the chord RQ produced, then PT < PR. O 

LEMMA 5.3. If T is any point in the region bounded by the lines RS, SU, and the arc 
RU, then ST < max(RS,SU). El 

z 

FIGuRE 2 
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In the lemmas that follow we will refer to a figure (Figure 2) which we now 
describe. Let OZ(z) and OY(y) be perpendicular axes. The circle centre 0 and 
radius OA = 1 cuts the positive z axis at A, and the positive y axis at B, the negative 
z and y axes at C and D, respectively. The arc VOF is described by a circle with 
centre A and radius 1. F is the point where this arc meets the arc AB and V is the 
point where this arc meets the arc AD. Also, the arc OE is described by a circle with 
centre C and radius 1 and E is the point where this arc meets the arc BC. We denote 
that figure bounded by the line OC and the arcs OF and FC by the symbol d(. 

We now consider the figure ABC (see Figure 3) which is bounded by three circular 
arcs with centres A, B, C, the vertices of an equilateral triangle, and radii equal to 
AB. 

A 

FIGURE 3 

This is the Reuleaux triangle and is well known as a figure of constant breadth. As 
such it follows that if P, Q are any two points in the Reuleaux triangle above, we 
must have PQ < AB. Since the figure 6f is completely covered by two Reuleaux 
triangles with vertices at 0, F, E and 0, C, E, we have the following lemma. 

LEMMA 5.4. If P, Q are any two points in e and PQ > 1, then one of the points must 
lie above the arc OE and the other must lie below the arc OE. Further, if R is any other 
point of i, then min(PR, QR) < 1. [1 

LEMMA 5.5. Let P, Q be any two points in the semicircle ABC of Figure 2 such that 
PQ = 1 and PQ is parallel to AC. If R is any point in this same semicircle such that 
OR < max(OP, OQ), then min(PR, QR) < 1. 

Proof. We refer to Figure 4 below. 
We may assume with no loss of generality that OP > OQ. If P = (a,b), Q = (a, 

b-1), then since both P, Q are in the semicircle, we have I < b < I and O < a 
r //2. If R = (r,s) and Isj > 2, then R, Q are in the Reuleaux triangle OCE or R, 

P are in the Reuleaux triangle OFA. In either case we get min(PR, QR) < 1. We now 
assume Isl < 2. Let C, and C2 be circles with radii 1 and centres P and Q, 
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z 

Y 

FIGURE 4 

respectively. Q and 62 intersect at points G= (a + r/Y/2, b - 2) and H= (a 
- //2, b - 2) Let K = (a + r/Y/2, - 2), L =(a + V/2, ), M =(a- /2, 

2), N = (a - r/Y/2, 2). The rectangle LKMN is covered by the circles C and 2; 
thus, if R lies in this rectangle, the lemma is certainly true. In order, then, to prove 
the lemma completely, we need only show that it holds when r > a + r/Y/2. If 
r > a + x//2 and s > b - 2, then r2 + S2 <s a2 + b2, bs > b2- b/2, and ra > a2 

+ ar/Y/2; also, 

PR (a -)2+ (b-s)2 a2 +b2+r2+s2- 2(ar + bs) 

< 2a2 + 2b2 - 2b2 + b - 2a2 - VYa 
= b - IL a 1. 

If r > a + r'Y/2 and s < b - 2, we have 1 - b > 0, -s > - b, and s(b - 1) > 
(1 - b)(' - b). Thus 

PQ2 = (a - r)2 + (b - 1 - S)2 < b - r/Ya < 1. 

Thus, one of PQ or PR must be less than 1 and the lemma is proved. O 

LEMMA 5.6. In Figure 2 let L be a point on OB such that OL = A = (5- 

Let KLM be a line perpendicular to OB, meeting the arc AB at K, the arc OF at G, the 
arc OE at H, and the arc BC at M. Let P be any point on the figure bounded by the line 
GH and the arcs OG and OH. If Q is in the Figure d/ and OP > OQ, then PQ <s 1. 

Proof. We refer to Figure 5 below. 
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z~~~~~ 

FIGURE 5 

We first note that GM = OC-=1. Let S be that point such that SM = SG = GM 
and S is to the left of the z-axis. Let the arc SM with radius 1 and centre G cut OC 
at N. If Q lies in the Reuleaux triangle MSG, we have PQ < 1. If Q lies above the 
arc OF, we have PQ_< 1. If Q lies below the arc OF and to the right of the line 
KLM, then OQ > OH = OG > OF, which is not so. Thus, we need only consider 
Q as_lying on_the figure_bounded by the line NC and the arcs NM and CM. Put 
g = GL, a = OG, b = ON. We have A2 + g2 = a2 and (1 - g)2 + A2 = 1. It follows 
that 2g= a2 and g= 1 ? 1-_A2 =_1l+(1+V3)/4._Since g< 2, we get g= 
(3 - V)/4 and a = (V - 1)72. If RM = GL, then LR = ON, 2g + b = 1, and 
we find that b = a. Since we need not consider Q to be N, we have OQ > ON = OG 
> OP, which is not possible D] 

LEMMA 5.7. Let Q be any point in C~ and let R be the point lying below Q such that 
QRIjAC and QR = 1. Let P be any point of &iS such that P lies below the arc OF and 
PQ > 1, PR > 1. Let S be that point such that SA =PQ, SO = PR and S is on the 
other side of A C from P. If T is_any point in that region of the semicircle ADC below or 
on the arc VO, then min(PT,ST) < 1. 

Proof. Refer to Figure 6 below. 

We first note that since PQ > 1, Q must, by Lemma 5.4, lie above the arc OF. Let 
U be the point below S such that US = 1, USjIAC and let M be the point above P 
such that PM-= 1 and PMjjAC. We see that SMPU, MPRQ, and ASUO are 
parallelograms. Also, M lies in the Reuleaux triangle A OF, and, since OU = SA 
= PQ > 1, U lies outside the circle ABCD. Let MP and QR meet OB at N and W, 
respectively. Since MQ = PR > 1, if follows from Lemma 5.5 that OQ > OP. If 
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z 

H A 

D \ . ? W jB 

T~~ 

FIGuRE 6 

ON > OW, then NP < QW and this means that P and Q must lie in the same 
Reuleaux triangle OFE, an impossibility. Hence ON < OW and OSMQ is a 
parallelogram with MS II OQ and MS- = OQ < 1. 

Since M lies in the Reuleaux triangle AOF, the angles OAM and AOM cannot be 
obtuse. Let SM meet AC at L. We have SL < SM < 1 and SO > 1, SA > 1; hence, 
the angles SAM and SOM must be acute. If L lies above A on the z-axis, then, since 
the angles LAM and OAM are complementary, we see that the angle SAM cannot be 
acute, a contradiction. Similarly, L cannot lie below 0 on the z-axis. Since L must lie 
between 0 and A on OA, we see that the angles SAL and SOL are acute. Since the 
perpendicular distance of S to PM is the same as that from Q to AO, we also see 
that S must lie in the square DOAH. Indeed, since OS = PR > 1, S must lie in the 
triangle DHA. 

Suppose T lies in that segment of the circle ABCD which is cut off by the chord 
formed by producing UP. Suppose further that T lies under this chord. Since U and 
P both lie below or on DB and on opposite sides of AC, by Lemma 5.3 we get 
PT < max(PC, UP). Since UP = SM = OQ < 1 and P and C are in the Reuleaux 
triangle OCE, we get PT < 1. 

If T lies in the parallelogram SUPM, then by Lemma 5.1, either PT or ST must be 
less than or equal to max(UP,PM) = 1. If T lies in the segment KDG which is cut 
off the circle ABCD by SU, then, by Lemma 5.2 ST < SG < SU = 1. 

Since S must lie in the triangle DHA, we must have HS < 1 by Lemma 5.1. Thus, 
if T lies in the triangle HSL, then ST < 1 by Lemma 5.1. If T lies in the triangle 
HAL, then T lies in the triangle HAO and this means that T must lie above the arc 
VO, which is not so. Since there are no other possible regions of the semicircle ADC 
in which T could be, the lemma is proved. EJ 
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6. Some Lemmas Concerning the Reduced Lattice 6R. In order to complete our 
development of the NIVCF algorithm in Section 8 we will make use of a number of 
lemmas concerning any reduced lattice 6R = ( 1, I, P). We note that if 6 E 6{, 
6'j < 1, 6 ' - I I> 1 and i > 0, then P = (qo, ) is a point in d6 of Section 5. 

LEMMA 6.1. If co,X E 6; ."'I, IX'I < 1; and 2x = 
X + 1, then Ix' - 11 < 1. 

Proof. We have 2x = , + 1 and 71 = 27qX. Further, from (4.1), g2 + q2 = 1W'12 
s< 1 and j<'j < 1. It follows that 

1 + 2 + q2 + 21j < 4 

and, as a consequence, (Dx - 1)2 + q2 < 1. Hence Ix' - 11 < 1. C1 

LEMMA 6.2. Let wXc, (=- E6, where w,X,4 are all distinct jw'f, IX'I, 1A'f 1 1, and 
jw' - 11, IX' - 11, 14' - 11 > 1. Ifq,,'qx > 0 and'q x, > 0, we cannot have any b such 
that b < , x,+ < b + 1. 

Proof. By symmetry we may assume with no loss of generality that P = (q, ,), 
Q = (qxu Dx)1 R = (1k,,) are all points in 6f. By Lemma 5.4, two of these points, 
say Q and R, are such that QR < 1. Thus, Ix' - 4"j < 1. If b <X, 4 <b + 1, then 
IX - 4,1 < 1, and we can only have X = 4, a contradiction. C 

LEMMA 6.3. Let 6,C EE 63, such that I6'J < 1, I w'l < 1, w > 6> 1, and I w'J < I6'J. If 
m,qrl > O and 1J' + 11 < 1, then X > 6 + 1. 

Proof. Suppose w < 6 + 1. Since w > 6, we have 0 < w - 6 < 1 and -1 < co - 
- 1 < 0. Since q,4#q > 0 and 60' + 11 < 1, we may assume with no loss of generality 
that P = (710, + 1), Q = ( R = (7,,T,)_in Figure 4. Since lC'l = OR < OP 
= I6'J, we must have one of QR = 1x' - 6'j or PR = Iow' - 6' - l less than or equal 
to 1 by Lemma 5.5. Since co - 6, X - 6 - 1 E 6{, we can only have X = 6 or 
co = 6 + 1. The latter is impossible and the former is also impossible since ICo'l < I6'I. 
Thus, we must have X > 6 + 1. El 

LEMMA 6.4. Let 6, C E iA such that C > 6 > 1; o'J, J6'J < 1; 6' - 1I, Co'- 1I > 1; 
and 'q,,qo > 0. If J6'I > Jw'J and 1q,J < A, then co > + 1. 

Proof. If 6 ' + lj < 1, then by Lemma 6.3, we have co > 6 + 1. Thus, we may 
assume 16' + 11 > 1. With no loss of generality, we may also assume P = 
Q = ( in Figure 5. Since OP = I6'I > JCo'l = OQ, we must, by Lemma 5.6, 
have PQ = 6' - w'l < 1. If 6 < C <6 -+ 1, we find that 6 - co = 0, which is not 
possible; thus, c > 6 + 1. O 

LEMMA 6.5. Let #,X,X E 63, such that I' | '< l,o'I < 1, Co' + I| < 1, o' 1I > 1, 
o' -11 > 1, IX' -11 > <1,Th, ' 0,? mjx > O. IfIo' - X'l > 1 and lx' - X' + lI> 1, 
then either 16' - C' + X' - 11 < 1 or 16' - C'I < 1. 

Proof. With no loss of generality we may assume that T = (qoa, ?), P = (qi, d,,), 
Q = (x, x), R = (x, x - 1) in Figure 6. Since PQ = co' - X'l > 1 and PK = co' 

X+ > I and S = - qx,^. - x + 1), we must have ST = 1J' - co' +X' - 
11 or PT = Cw' - 6'I less than or equal to 1 by Lemma 5.7. [1 
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LEMMA 6.6. Let #,w,x E % and let 6 (> 1) be the minimum adjacent to 1. 
Suppose that Jw'J < 1, IX'! < 1, 1' + 11 < 1, Jw' + 11 < 1, ijjjq <0, ? qx > 0. If 
6<X,i w <6 + 1, then 6 = w + 1 - X. 

Proof. Since 0 < X - 1, w - 1 < 6, we see by the reasoning of Lemma 2.4 that 
Ix' - 11, Iw' - 11 > 1. 

If 1w' - x'l,I w' - X' + 11 > 1, then, by Lemma 6.5, either 1w' - 6'j < 1 or 6' - 

+ X' - lI < 1. If Iw' - 6'j < 1, then since Iw - 61 < 1, we get w = 6 which is not so. 
If o' - w' + X' - 11 < 1, we see that jp'l < 1, where p = 0 - o + X- 1. Now 
6+ X> 6 + 1 > w and x - (o + 1) < 0; thus, -1 <p <6. It follows that p can 
only be 0 or 1. But if p = 0, then 6 = w - X + 1 and this is impossible because 
1o' - X' + 11 > 1. If p = 1, then 6 = w - X + 2. Since Iw' - X' + 11 > 1 and -3/2 
< C - x< 1/2, we cannot have I6'l < 1; thus, p * 1. 

If 1w' - X'l < 1, then w = X, which is not so. Hence, we must assume that 
co' - X' + IJ < 1 and Iw' - X'l > 1. Put p = w - X + 1. We have Ip'I < 1 and 
O < p < 1 + 1 < 1 + 6. Since we cannot have p < 6, we have 6 < p < 1 + 6. If 
p = 6, we have the lemma; thus, we will assume that 6 < p < 1 + 0. By the 
reasoning of Lemma 2.4, we have Ip' - II > 1. 

Suppose qp, > 0. If p = w, we get X = 1, an impossibility. If p = X, then 
2X = w + 1. Since IX' - 1 > 1, this cannot be true by Lemma 6.1. Thus, p,x,w are 
all distinct elements of ?R such that qp,r1<i>x have the same sign; Ip'l, IJw', IX'l < 1; 
IP' - I1, Iw' - 1J, IX' - 1, > 1; 6 < p,w,X < 6 + 1. By Lemma 6.2, this is impossible. 

If qp = 0, then w - X E Z. Since Iw - Xl < 1, this means that w = X, which is not 
so. We can only haveqp, < 0 and, as a consequence, qpqo > 0. Since 0 < p - 6 < 1 
and -1 < p - 6 - 1 < 0, we see that 6 ' - p'l > 1 and 6 ' - p' + I I > 1. Since 
6' + II < 1, we get Ix' - 6'! I or Ix' - 6' + p' - I < 1 by Lemma 6.5. Since 
o < X - 6 < 1, we cannot have IX' - 6'J < 1. Since X - 6 + p - 1 = w - 6, we 
also cannot have Ix' - 6' + p' - 11 < 1. It follows that p = 6. D1 

If w E 6l, w X 2 and P(w) = (&,) is the puncture of w, let w* be defined as 
that element of 6 such that P(w*) = P(w), lw*'l < 1 and lw*l is minimal. We note 
here that if IqJ > 1, then w* cannot exist. Since there must exist a E Z such that 

- al I 2, we see that if J < A/2, then 2 - (g, - a)2 < 1. That is, if l, l 

< r//2, then w* exists. We also point out that if w* exists and w* > 0, then 
1w*' - 11 > 1. For if 1X*' - 11 < 1, then w* > 1 and 1w* - 11 < 1w*l. Since P(w*) = 

P(w* - 1), this contradicts the definition of w*. 
We require the following lemma of [8] (Lemma 4.3). 

LEMMA 6.7. Let P(X) = (QxS,x) be the puncture of X E 't such that {x > 0, mqxl 
< r/ /2, and let P(w) = (t ,q()be the puncture of w E 6. If Iw'l < 1, (,, > x, and 

rqwrqx > O, then w > X**. 

LEMMA 6.8. Let 6 (> 1) be the minimum of IR adjacent to 1 and let w (> 6) be the 
minimum of 6A adjacent to 6. Suppose that 16' + 11 < 1 and co < 6 + 1. If there exists 
X E 6Y such that ljx l < J3 /2, (, > (x > 0, mm7x > 0, then X* = w + 1 - 6. 

Proof. Since 171X} < Th/2, X* exists. Further, since lX*l > 1 and X* = (x + 1x- 
with > 0 and x*>-1, we have x* > 1. Since qxq(,> 0, > >x and lw'l < 1, 
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we must have w > X* by Lemma 6.7. Since co is a minimum of 61, it follows that 
IX*'J > Iw'l. Since IX*'J < 1 and X* > 0, we must have X* > 6. If X* > 6 + 1, then 
W > 6 + 1, which is not so; thus, 1 < 6 < X* < X < 6 + 1 < X* + 1. Further, 
IX*' - 11> 1 and jco' - 11> 1. 

If lx* + 11 < 1, by Lemma 6.3, we get X > X* + 1, which is impossible. Since 
1I - X*I < l,wemusthavelw' - X*'l > l.ByLemma5.4,wemusthaveIc' + lJ < 1. 
If 'q1q, > O, then X > 6 + 1 by Lemma 6.3. Thus, qo-q < O and 6 = w + 1 - X* by 
Lemma 6.6. El 

7. The Main Result. In this section we will show how to limit the possible values 
for X in . We assume that we have found 4,4 E 63{ and a basis {P(O),P(4)} of 
E(P) with the properties given in Section 4. We require simple results concerning 
elements of 6R which have certain punctures in E(P). Throughout this section and the 
next we denote by 6 (> 1) the minimum adjacent to 1 in 63{ and by w (> 6) the 
minimum adjacent to 6 in fR. 

LEMmA7.1.If ft < - , w t 6 + 1, * p*, * $ *,andeither (O > (, or'i,? < 0, 
then (,> w. 

Proof. Since jq, I < V3/2, O* exists. Further, since (, > 0, we have 4* > 1. Since 
1*'I < 1, we must have O* > 6. If O > (, and qoq, > 0, then 6 > 4* by Lemma 
6.7; thus, we may assume 8-q, < 0. Since ,,-qo < 0 (see the proof of Lemma 6.8), we 
also have > 0. If , > ,, we have w > 4* by Lemma 6.7; thus, since W is a 
minimum, lw'j < 1k*'I. If w > 4*, then, since 1j14j < A, we must have w > O* + 1 > 6 
+ 1 by Lemma 6.4. Since O < - 2, this is impossible. O 

LEMMA 7.2. If P(6) = 2P(4) + P(4), then O < - 

Proof. Since Jq I < 1 - rJ/4 < /7 /4, we have 

1 - 2 > 3/2 - I - n. 

Since J4'- 11> 1, we have t,1* <1- I 1 - q. Since O* > 1 and * = + < , 
we see that (,> I +- *. Since 6<4, we have O + 24+ +1 < 4+ ; hence, 

< + < * - < - 

LEMMA 7.3. If P(6) = 2P(f) + P(4), then 6 < O* < 6 + 1, J6'J > 10*'J, and t?* > 
0. 

Proof. Since 6 = 0 + O < * = + (,,, we have t.. > ?, + o. Also, y". + 
=* > 1; thus, T,> 1 - t<p* + tO and 2D,*. > 1 + O > 0. Since Jqf, < AJ/2 and 

*'- 11> 1, we must have 0 < < 2; further, ,> 1 - > l > ,,*. Thus, 
G< * < 0 and 1b01 > ?-O > 1 -20* >21 -22? -1. 

Now 6 < 4p* < 24X < I + DO + 2t = + I= + . Since - < -4* < 1- 
+ < ~T* < 2, we must have JqO - qo I> rJ/2. Hence, J4j> '/ /2 + J4j> 21jij 
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and i,j0r < 0. Thus, jq0j > rJ/2 - lq.l and 

J,l2 = 2 + j2 > (r/ /2 - + (2 1 - - 

> (V/2 - (1I - /4))2 + (21 - (I - r/4)2 1 

> (I - r3/4) + 1-11 - (I - r3/4)) 

> q2 + 42 

LEMMA 7.4. If P(O) = P('p) + P(4) and tf < - 4, then P(co) m P(* ) - P(4). 

Proof. Assume that P(c) = P(0) - P(4). If 0* > 0 + 1, then * + ~(X > t0 + 
+ ,,+ 1 and t,* >g + 1 + ; >0. If 4* exists, then (,, 1 -> > l and , 
> 2, which is not possible. If A* does not exist, we must have I rxJ> /2. Consider 
X = * - o. Since P(x) = P(4), we see that l4*' - co'l > 1; for, othersie, 4* would 
exist. Also 1,qj = Jqo - q,j = jq0j + JqJ,j > jq0j + rJ/2 and t,* > 0. Thus P = (qo, 

and Q = (q, ,,) must lie in the same Reuleaux triangle FOE in Figure 2 and 
J*' - o'l = PQ < 1, a contradiction. 

Thus, we must have 0* < 0 + 1. Since P(4*) m P(O), we can only have 4* < 0 + 
1; hence, 0 < 0*, co < 0 + 1, qq,, < 0 and r)Xj,> 0. One of lx' + il or l+*' + il 
must be less than or equal to 1; for if this were not the case we would see that the 
points P, Q above would be such that l+*' - o'l = PQ < 1, which is not possible. 
Thus, by Lemma 6.6, we get 0 = co + 1 - 0* or 0 = I* + 1 - co. Since P(O) m 

-P(4) and P(O) m P(4), neither of these is possible; hence, P(co) m P(* ) - P(4). 

In the theorem below we are able to give the possibilities for the puncture of co 
when to < - 2 

THEOREM 7.5. When 0 < - I, the puncture of X, P(o), must be one of the punctures 
given in the second column of the table below. 

TABLE 7.1 

P(O) possible values of P(o) 

P(W PWI P(0),P(O + A) 

P(4) P(), P(), P(O - A 

P(p - 4 P(O, P(2 - O 

P(p + 4 P(44P(p + 4 

P(20 + 0) P(O 

Proof. By Theorem 4.1 we know that P(0) must be one of the 5 possible entries in 
the first column of Table 7.1. Since P(c) E I(P), we must have 

(7.1) P(co) = aP(4) + bP(4), 
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where a,b E Z. That is, 

(7.2) = at, + 

(7.3) q = aq , + bq,~. 

Further, we note that since O, o are minima of 61, we have lxo' - II > 1, IO' - II > 1; 
also, 10' + ll < 1 and ,, > 1 - C > 0, co < 0 + 1, Ico'l < O'l. When co * 0 + 1, we 
have , < 0 by Lemma 6.3. Suppose a < 0 in (7.1). Since (, > 0, we must have 
b > 0 and 1m,qj = IaJII-.I + blJal from (7.3). Since 1qj < 1, we have b < 2. Since 

40 > (x;, we must also have b > lal. Thus, b = 1 and a = 0, which is not possible. 
Thus a > Gin (7.1). 

Case 1. (P(O) = P(4)). If a = 0 in (7.1), then , = b( and j, = bq,,; thus, 
O < b < 3. If b = 2, thenq,q > O,(, > t4 andJlql < < /2. Itfollowsthat{* 
exists and by Lemma 6.8 o* = X + 1 - 0. Since P(4) = P(4*) = P(c - 0), we get 
P(4) = P(O), which is impossible for a = 0, b = 2. Thus, if a = 0 we can only have 
b = 1. 

Suppose a > 0. If b < 0, then from (7.3) we get > 0 and q,# > 0. By 
Lemma 6.3, we can only have co = 0 + 1 and a = 1, b = 0. If b> a, put c = b - a 
> 0; we have, , = a(r,, + q,~ ) + cq,, and (, + ) > O. Thus, if Jqo + qpl > 2, 

then lqaj > 1. If either a > 2 or c > 1, we have 1,qj > 1 which is not so. Thus 
a = b = 1. If I0 + qj < 2, then there exists X=(4 + 4)*. Since mux> 0 and 

> > 0 when (a,b) m (1, 1), we have (Lemma 6.8) X = co + 1 - 0. Since this 
means that P(co) = P(24 + 4) = 2P(4) + P(4), we get a contradiction. When 
1 < b < a, we have co = (w + (, = t, + ato + b(, > 2(0 + (, > (a + 1 - - 1 
> 40 + t0 + 1. Thus, co > 0 + 1 and this is impossible. We have proved the first row 
of Table 7.1. Before dealing with the remaining 4 cases we point out that if 
P(w) m P(4), P(O) m P(co) and either qo, < 0 or 0 > 4., then 4, > (, by Lemma 
7.1. 

Case 2. (P(O) = P(4)). If a = 0, then b > 0 and q, = bq 2> 0; thus, by 
Lemma 6.3, we get co > 0 + 1, which can only be so if co = 0 + 1 and (a,b) = (0,1). 
If a > 0, we have P(O) m P(co) and qoq, =qpq < 0. Thus, 4, > (, when P(co) m 

P(4). If b > 0, then P(co) m P(4) and , > 4., which is not so. If b = 0, then 
4(, > (, unless a = 1, b = 0. If b < 0, we must have lbl < 1; otherwise, 1q.,l > 1. If 
b = -1 and a > 1, then P(c) m P(p) and (, > 4., thus (a,b) = (1,-1). 

Case 3. (P(0) = P(O - 4)). Since t0 < - 2 and I0'l < 1, we must have Iq0I 
< x/2. Thus, JnJ = JJ + IqpI < Ah/2 and lq,Jl < A/ /2. If P(co) m P(0), then 
, < 0. Further, " j, > 0 and ,,,; < 0; thus, ,q4, > 0 and j,j, < 0. If (, > (, 
we must have 4* = co + 1 - 0 by Lemma 6.8. This means that P(co) = P(4), which 
cannot be so as <0 . Thus, 0 < (, <- (x and 0 < a4, + b(, < ( , and b < 1 or 
(a,b) = (0,1). If b = 0, then <, > 0; hence, b < 0. Since 1 > Jr)w I = a rlq<, + 

IbII'rjq,, we must have b > -2. Since b = -1 and 0 < at, - (, < (,, we see that a 
can only be 1 and this contradicts P(co) m P(0). 

Case 4. (P(0) = P(4 + 4)). Assume P(co) m P(4) and P(co) m P(0). Since 0 > 

4., we have 4, > (,. If a > 0, then, since 0 < at, + b(, < 4., we must have b < 0. 
By the reasoning used in Case 2 we have b = -1 and a = 1. By Lemma 7.4, this is 
not possible. Thus, we can only have a = 0 and b > 0. If this is so, we notice that 

= qp + q,, and rj, = bq,, have the same sign. By Lemma 6.3, this means that 
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0 + 1.Ifc = 0 + 1,wegetacontradiction;thus,wecanonlyhaveP(o) =-P() 
or P(c) = P(0) = P(4 + ip). 

Case 5. (P(O) = P(24 + 4)). By Lemma 7.3, we have 0 < 0* < 0 + 1 and 
Ik*'1 < 10,1. If X# m 4*, then P(co) m P(4) and co m 0 + 1. Thus, 0 < c, 0* < 0 + 1. 
If qoqo > 0, then, since (0 > 4., we get 0 > 0* by Lemma 6.7. Since this is not 
possible, we must have q0rq,, < 0. Now rj0 < 0; hence, r)J,> 0. Using the 
reasoning of Lemma 7.4, we see that one of I w' + 1I or I *' + 1I is less than or equal 
to 1; thus, by Lemma 6.6, we have either 0 = 0* + 1 - X or 0 = X + 1 - 0*. In the 
first case we put P(c) = P(- ), an impossibility. In the second case we get 
P(c) = P(34 + A); but then (,, > , and this cannot be so as P(co) m P(p). Thus 
we can only have P(co) = P(O*) = P(4). C 

8. Implementation of the NIVCF Algorithm. We now describe how to find the 
possible values of P(c) and then how X itself can be found. We let v be defined to 
be 0 when P(0) * P(24 + A). When P(0) = P(24 + 4) we define v to be 0*. By 
Theorem 7.5, 0* = X when P(0) = P(24 + 4); thus, v is that point of 6I such that 
P(v) is one of P(p), P(i), P(4 - 4) or P(4 + 4), lv'l - 1, v > 0 and v is the least 
point of 6R with all of these properties. Clearly v can be calculated by using the same 
methods as those described in Section 4 for finding 0. The only difference is that 
P(v) * P(24 + 4). 

THEOREM 8.1. If 
tv 

> - 2, then X = v. If 
tv 

< - 2', then the values of P(W) can be 
found from the possibilities listed in the second column of Table 8.1. 

TABLE 8.1 

P(v) possible values of P(o) 

P(M) P(4), P('), P(4 + 4) 

PM 4) P(), P(+ P( - 4' 

NO+ - A) p P(0 P(o - A) 

NOf + O vP(O NO+ + O 

Proof. If Du > - 2, then either 
o 

> - I or P(0) = P(2c + A). In the first case, 
Xo = 0 = v; in the second case, by Lemma 7.2 we have 0 < - I and X = 0* = v. If 
DU < -2, then we cannot have P(0) = P(24 + A) by Lemma 7.3; hence, v = 0 and 
b < - 2. The possibilities for the puncture of X can now be found from Table 7.1. 

Note that implicit in this result is the fact that we can run the Voronoi algorithm 
as given in Section 4 without ever having to consider the (a, b) = (2, 1) case. That is, 
instead of finding @(i) in 6Aj, we find v(i) in 6Ai. We will still find Eo. In fact, 
fo = FHr= Ivg() and r I p. 

If P(c) is one of P(yl), P(y2),..., P(yk), we need to know how to find t. As 
described in Section 4 we find the at most 2k possible values yI1,YI2, Y21, Y22 , Yk1 
Yk2 that X could be. After finding the least of these 2k values which exceeds 0, we 
need only determine whether or not IY'I < I 'I. If so, X = y; if not we delete this 
value of y from among the possible values for X and try again. A method of 
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determining whether or not jy'j < 101 which involves calculations with integers only 
can be developed by examining the integer I = N(0y'y" - N(0))/N(0). We have 
Iy'l < I'I if and only if I < 0. 

By using the ideas developed above together with the methods described in [8], a 
computer program was written to implement the NIVCF algorithm on an AMDAHL 
470-V7 computer. To get some idea of how certain aspects of the algorithm behave, 
we computed all of the distinct lattices C,, where i1 = 'YK =(lqt,v) and {1,A,u,} is 

3 
a basis of 03 for each distinct pure cubic field '= C(m ) with D < 91000. The total 
number of lattices found was 325354898. We had 0' + 0" < -1 for 112413018 of 
these. We consider these latter lattices in more detail in Table 8.2. 

TABLE 8.2 

puncture of 0, frequency puncture of w, frequency 

P(o), 88139367 P(O), 83928591; P(4), 2759217; P(4/ + 4), 1451559 

P(4), 18584743 P(O), 1673460; P(4), 15267239; P(4/ - 4), 1644044 

P(O - 4), 4440826 P(4), 1123515; P(O - 4), 3317311 

P(O + 4), 1248082 P(4), 1248082; P(o + 4), 0 

Notice that in most of these cases o = 0 + 1, the exception being the case in 
which the puncture of 0 is P(O + 4), where we found no instance of W = 0 + 1. 
There does not appear to be any a priori reason for why X should never be 0 + 1 in 
this case. However, it must be true that if X = 0 + 1, when P(0) = P(O + A), then 

2 <2 and jq4 < 2IqI. It seems, therefore, that w = 0 + 1 would not occur very 
frequently in this case. Probably, if we were to continue our calculations beyond the 
values of D considered here, we would find an instance of w = 0 + 1, just as we 
finally found a 0 with puncture P(24/ + 4) in Section 4. 

We also determined all the distinct 6A i produced by the VCF when R is defined 
above and 36000 < D < 64000. We found that the VCF algorithm found a total of 
144092600 distinct 611i and the NIVCF found a total of 108315954 distinct 'S for 
values of D in the same range. The ratio is .7517. In fact, for most values of D the 
ratio ff/p seems to be between .74 and .75. For example, when D = 252727, 
p = 135340 and 7r = 100911 for a ratio of .7456. This value is somewhat larger than 
the corresponding value of about .69 for the NICF versus the RCF algorithm. When 
we compared the actual timings on running the VCF and NIVCF for finding a 
specific 6A, we found that the NIVCF found this 6n value in about 79 to 80 percent of 
the time needed by the VCF algorithm. Thus, the computational evidence seems to 
suggest that wherever one is using the VCF algorithm, one should instead use the 
faster NIVCF algorithm. 
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